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Linear viscoelasticity of concentrated hard-sphere 
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Received IO January 1994, in final form 20 May 1994 

Abstracb The viscoelastic behaviour of model near hadsphere continuous potential r-36 
dispersions have been determined using Brownian dynamics simulations in a hydrodynamics- 
free approximation. Two methods were used to obtain the real and imaginary components 
of the complex shear viscosity, rf and qc, respectively: first, calculating a time correlation 
function under no-shear conditions using a Green-Kubo formula; secondly applying finitestrain 
amplitude oscillatory shear cycles in the linear response limit to the contents of the BD cell. We 
find that the normalized stress autocodation function can be approximated very well by a two- 
parameter mtched exponential over the complete volume fraction range. The state dependence 
of the derived specmm of relaxation times is determined. As for experimental systems the 
complex viscosity scales with a 'longest' relaxation time. in dimensionless form, DorK/n2, 
where 0 is the radius of the particle and Do is the selfdiffusion coefficient in the zero-density 
limit. Also in the intermediate-frequency regime 40 c n2ufDo e 400 we find that both the 
real and imaginary pam of the complex shear viscosity decay as - o-L/2 in agreement with 
experiment and theory. The Newtonian viscosities obtained using q'(o -+ 0) agree well with 
the predictions of the Krieger-Dougherty equations. The product of the Newtonian viscosity 
and the long-time self-diffusion coefficient increases linearly with volume fraction for most of 
the fluid range. 

1. Introduction 

The dynamical properties of systems of interacting near hard-sphere colloidal dispersions 
have been studied extensively over recent years. The viscoelastic response to an oscillatory 
flow field is characterized by a complex viscosity composed of real and imaginary parts, q' 
the in-phase and q" the out-of-phase response, respectively. There is a viscoelastic response 
at all volume fractions (except in the Einstein limit), which is increasingly dominated by 
the many-body relaxation of the colloidal particles as the volume fraction increases. The 
linear viscoelasticity for stabilized dispersions has been measured experimentally by van 
der Werff etal (1989) in the volume fraction range 0.10 < 4 < 0.60. They discovered an 
inverse-square-root dependence of both q' - q'(00) (where q'(c0) is the infinite-oscillation- 
frequency viscosity) and q" in an intermediate-frequency regime - 40 < a20/Do < 400 
where a is the radius of the particle and DO is the self-diffusion coefficient in .the zero- 
density limit. Cichocki and Felderhof (1991,1993) and de Schepper (1993) derived analytic 
expressions for the complex viscosities, using an approximate form for the spectrum of 
relaxation times of the stress relaxation function, which also lead to dynamic viscosities 
with a high-frequency - U-'/' limiting behaviour. Here we report the results of Brownian 
dynamics simulations of model stabilized dispersions that explore the viscoelastic response. 
We calculate the linear dynamic viscosities by two methods. In the first method, the 
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Figure 1. The stress relaxation autocorrelation function, C&) for the state points of volume 
fraction given on the figure. N = 108 in each case. 

temporal evolution of the shear stress fluctuations in an unsheared sample are used to 
calculate a time correlation function, C&), which is numerically identical to the shear 
stress relaxation function measured in linear step-strain rheology experiments. The Fourier 
transform of C&) gives the complex moduli and shear viscosities. The advantage of this 
approach is that because no shear rate or strain is applied to the system, then the response 
function extracted from the simulation is guaranteed to be in the linear response regime, 
which can be difficult to establish by the direct application of a shear strain profile to the 
system. 

The second route to the dynamic viscosities is to use non-equilibrium BD. The model 
dispersion is subjected to a homogeneous oscillating shear flow field with a exp(-ior) time 
variation, in analogous fashion to the operation of oscillatory shear rheometers where the 
liquid is excited into a non-equilibrium state by an externally applied wall-driven seain 
field. 

2. Brownian dynamics simulations 

The Brownian dynamics method is the same as has been used in previous work, consisting 
of N coupled irreversible equations of motion for the colloidal particles of mass m at particle 
positions ~i (1 < i < N )  

mTi = E  + R; - $ T i  (1) 
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Figure 2 The normalized stress relaxation autocorrelation function from simulation and 
campared with the stretched exponential least-squares fir for the state 6 = 0.450. 6 = 0.315 
and r' = 0.0046. 

where P is an effective interaction forde calculated from 

l$ = - v ~ v ( l r i  -rjl) (2) 
i#i 

where V is an effective chemical interaction between colloidal particles, i and j, which is 
assumed to be pair-wise additive. R is the Langevin random force and is the friction 
coefficient. The timescale for momentum relaxation of the colloidal particle, called the 
Brownian relaxation time, is ZB = me-' = m/3au71s, where q8 is the viscosity of the 
suspending medium. An integration of equation (1) in the creeping flow limit gives an 
algorithm that evolves the assembly of particles through time and space 

(3) 
The last term in equation (3) allows for the inclusion of a time-dependent linear shear- 
flow field in the. suspending medium. In the present model we have omitted many-body 
hydrodynamics, to discover the predictive ability of a simple 'reference' model of a colloidal 
system. The colloidal particles interact through an inverse power potential where U is the 
equivalent hard-core diameter of the model colloid molecule and r is the separation between 
the centres of two model particles. 

rz(t + h) = r&) + (W) + W t ,  h) )hl t  + )i(t)hry. 

V ( r )  = €(U/T)n.  (4) 
We set E = kBT and n = 36. This interaction would represent a stabilized colloidal particle 
and is sufficiently hard to be equivalent to a hard-sphere system for many purposes. The 
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reduced number density of particles, p = N u 3 /  V and the solids volume fraction, 4 = n p / 6 .  
The frequency o is made dimensionless in this work by multiplying by a characteristic 

structural relaxation time, r,, which is the time it takes a colloidal particle at infinite dilution 
to diffise a distance 

(5) 

D M Heyes and P J Mitchell 

where a = 5 / 2  

rr = 3?ra3qs/4k~T = a2/Do. 

For colloidal particles of diameter in excess of 0.1 pm, ?B << r,, so we can choose a 
time step h such that r~ << h << r,. The time step in the simulation, h, is chosen 
with h = 8;/2Do, where 8, is the standard deviation of the random displacement. The 
value of 8, was chosen as large as possible within the bounds of algorithm stability and 
accuracy (determined empirically from a series of simulations and checking for variations 
in D'/Do and U / N ,  for example). We typically chose the value 8,  = 0 . 0 0 9 ~ .  A hard- 
sphere Brownian dynamics algorithm proposed by Cichocki and Hinsen (1990) revealed 
a strong sensitivity of the self-diffusion coefficient to time step. In their algorithm, trial 
moves were rejected if they resulted in particle overlap. The sensitivity of the self-diffusion 
coefficient to the magnitude of the time step using this procedure is a pathological feature 
of their algorithm because the effective size of the particle depends on the root mean square 
Brownian displacement, so the effective volume fraction at constant particle number density 
is dependent on the time step. In these inverse power model colloidal systems there is no 
such configuration rejection criterion, which results in a much smaller dependence of the 
system's properties on the magnitude of the time step. Comparisons between long-time 
diffusion coefficients of the ,inverse power potential for n = 36 and the hard-sphere data 
of Cichocki and Hinsen (1992) reveal excellent agreement, in some sense vindicating both 
techniques. For example, the values of DLIDo are. 0.82 and 0.29 at volume fractions of 0.1 
and 0.4, respectively, from both techniques. 

For the inverse power potentials considered here, the interaction energy, pressure and 
mechanical properties are trivially related. The average interaction energy per particle is 

where rij = r i  - rj. Then the osmotic pressure is given by 

P = np(u) /3  (7) 
and the infinite-frequency shear rigidity modulus in the zero-strain-amplitude limit, 
G, = G'(o 4 w), is given by 

G, = (n2 - 3n)p(u)/15 (8) 

making use of the formula of Zwanzig and Mountain (1965). Similarly for the infinite- 
frequency bulk rigidity modulus in the zero-strain-amplitude limit, K ,  = K'(o -+ CO), is 
given by 

K ,  = (n' + 3n)p(u)/9.  (9) 
The stress tensor, a ,  is in terms of the microscopic details 

where I is the identity matrix. The first term in equation (IO) is the kinetic contribution to 
the stress, and the second term is the contribution to the stress from the direct interactions 
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between the colloidal particles. It does not include the solvent-colloidal particle or solvent- 
mediated hydrodynamic forces between the colloidal particles. The stress in this free- 
draining level of approximation is treated at a pair-wise additive level. For a more realistic 
representation including hydrodynamic interactions, the relationship between particle stress 
and macroscopic properties is much more. complex (see for example Felderhof (1987) and 
Brady (1993)). On the timescale of the motion of the Brownian particle, they have reached 
thermal equilibrium due to the large number of collisions with the solvent molecules. The 
magnitude of the kinetic component of the stress is negligible and much smaller than the 
potential term (equation (10)). Also as we are mainly interested in the off-diagonal elements 
of the stress tensor, we do not need to include it because the kinetic contribution to the stress 
is a diagonal matrix on the rheological timescale. Therefore we do not need to consider the 
kinetic component and have omitted it in our calculations of the stress tensor. 

We also compute the long-time, DL self-diffusion coefficient from the 'local' slope of 
the mean square displacement with time curve, i.e. 

1 d(Ar(r)') 
6 dt 

D(t)  = - - 

where DL = D(t + CO) and Ar(t) = ri ( t )  - ri(0) for arbitrary particle of index i. The use 
of this definition of a timedependent self-diffusion coefficient was discussed by Cichocki 
and Hinsen (1992). This approach converges more rapidly to the asymptotic limit than 
(Ar(t)')/6t. The slopes were taken for times in excess of 2.5a2/Do. 

2.1. l7me correlationfunctwn 

A linear response expansion of the position Langevin equation used in this work (e.g. Hess 
and Klein (1983)) leads to a Green-Kubo expression for the linear shear viscosity in terms 
of the shear stress time autocorrelation function, CS(t),  defined as 

where (. . .) indicates an average over time origins in equation (12). This method was 
first used by Levesque et ai (1973) who applied it to molecular liquids. The infinite- 
frequency linear shear modulus is given by G, = C,(O). In an unsheared system, the stress 
fluctuations of all the off-diagonal elements of the stress tensor are equivalent. Therefore, we 
improved the statistics of Cs(t)  by considering mzy, nXz, and qz separately in equation (12), 
and then averaging the three at the end of the simulation. (The stress tensor is symmetric 
so crus = up..) The function, C&), is exactly the same function as the stress relaxation 
function derived from step-in-strain experiments taken in the linear strain limit. The time 
correlation functions have to extend typically for - 20000 time steps to ensure decay of 
the function to zero. In order to reduce the computer memory requirements, the correlation 
function was constructed in a piece-wise fashion from three separate correlation functions 
with time origins started every (and with a resolution of) 1, 10 and 100 time steps. These 
three correlation functions extended for progressively longer in time, and non-overlapping 
pieces were merged for the purpose of subsequent analysis and presentation. The number 
of entries in the histogram used to calculate the time correlation function decreases as time 
increases. Nevertheless the statistics is reasonable for the - 500000 time steps covered for 
each production simulation. 

The present BD model (described in greater detail by Heyes and Melrose (1993) and 
Melrose and Heyes (1993)) only incorporates the thermodynamic interactions between the 
colloidal particles and ignores the many-body hydrodynamic solvent-mediated forces. A 
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measure of the contribution of many-body hydrodynamics to the total viscosity is given 
by the experimental value of the viscosity in the second Newtonian plateau, qm. which is 
entirely hydrodynamic in origin. If we assume that the hydrodynamic contribution to the 
viscosity is equal to qw at all shear rates, then the Green-Kubo formula in the present 
model gives the difference between the Newtonian viscosity qo (the zero-shear-rate limit) 
and qm. The Newtonian viscosity, qo, is then related to C.(t) through 

D M Heyes and P J Mitchell 

m 
170 = vm + l c&) df (13) 

where we need to take a value for qm from another source. The same argument applies in 
the case of oscillation, in that we can only monitor deviations from q'(w), the real part of 
the infinite-frequency viscosity. 

It is convenient to render the colloidal liquid's viscosity dimensionless by dividing by the 
viscosity of the suspending medium. This leads to so-called relative viscosities, qm = q0O/qs 
and qrm = qm /qs. The complex dynamic viscosity is 

q*(w) = q'(o) + iq"(w). (14) 
The dynamic shear modulus, G*(w) = G'(w) + iG"(w) where G'(w) = wq"(w) and 
G"(o) = wq'(w). We have 

and 
W 

q"(o) = W(i l C.(t)e-'"'dt) 

where ~' (co)  = 'I,. C&) can be represented by a superposition of exponential relaxation 
functions 

(17) 
m 

C&) = G, 1 p(t)e-'l'dz 

with the normalization condition 1; p ( t )  = 1. Then 

where H ( t )  = zp(r) .  

in both the linear and non-linear response regimes is described in the next section. 

2.2. Applied oscillatory shear 

The contents of the BD cell are sheared homogeneously with a time-dependent strain over 
n cycles 

A non-equilibrium BD technique which can be used to compute the complex viscosities 

y(t) = yocosot (19) 
where yo is the strain amplitude. The analytic expressions for the dynamic viscosities are 

and 
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The number of cycles in a simulation of a specified number of time steps and oscillatory 
frequency was adjusted to be a whole number by scaling down the time step. The number 
of cycles varied with the value of O J ~ .  The number was adjusted empirically to produce 
reasonable statistics for the average quantities. For example, for 0 7 ~  > 100 we chose 
n = 200 and for 07, < 0.1 we used n = 10. Limitations on the availability of computer time 
necessitated a smaller number of cycles at low frequency, as each cycle takes an increasing 
number of time steps as the frequency decreases. Therefore, the statistical unceaainty of 
the cycle averages was larger as frequency was lowered. 

In the following section we use the time correlation method and direct application of a 
shear flow to explore the linear viscoelasicity of these model colloidal liquids over a wide 
volume fraction range. 

,--. 
U 
c 
t4 

F- 3. Plot of stretched exponential relaxation time spectrum distribution function for 
the values: (a) 0 = 0.238 and T' = O.WWM, (5) 0 = 0.315 and r' = 0.00465, (c) 0 = 0.485 
and 7' = 0.0306, (d) 0 = 0.653 and 7' = 0.0414. 

3. Results and discussion 

A series of equilibrium Brownian dynamics simulations was carried out at a range of volume 
fractions using N = 108,256 and 500. Simulation details are given in table 1. The first 
three DL/Do in table 1, for 4 = 0.075.0.115 and 0.150 fit well to DL/Do = 1 -a# with 
the coefficient a = 1.72~0.2 close to the prediction of the hypothetical case of hard spheres 
without hydrodynamic interactions a = 2.0 (Ackerson and Fleishman 1982). 

Above a volume fraction of 4 - 0.4 there is an increasing system size dependence for 
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lsble 1. Thermodynamic. mechanical and Newtonian Uansport wefficients from Green-Kubo 
formulae. KD is the value of m-qrm f" the Krieger-Doughmy formulae mussel eta1 1989). 
m e  mean square force in the a-cartesian direction is (FZ). The thermodynamic and mechanical 
quantities M accurate to - IS, while the viscosity has a lager mor of - 23%. Only the 
interaction componenls of the thermodynamic and mechanical quantities are given. tri. is the 
length of the production simulation. Key: (a) n = 6 in equation (4); (b) n = 12 in equadon (4); 
nfhenuisc n = 36 

108 
108 
108 
108 
108 
256 
108 
500 
500 
108 
256 
500% 
5Wb 
5w 
256 
500 
108 
108 
256 
500 

0.075 
0.115 
0.150 
0.250 
0.350 
0.400 
0.427 
0.427 
0.450 
0.472 
0.472 
0.472 
0.472 
0.472 
0.490 
0.490 
0.500 
0.527 
0.527 
0.527 

455 
143 
444 
I13 
63 

330 
397 
I70 
207 
153 
151 
159 
175 
217 
I82 
243 
122 
133 
I13 
146 

0.0322 
0.0563 
0.0819 
0.1892 
0.3893 
0,5443 
0.6572 
0.6599 
0.7750 
0.8939 
0.8945 
4.0706 
2.4€49 
0.9016 
1.0169 
1.0232 
1.0763 
1.0579 
1.1293 
1.3327 

27.98 9.880 0.365 
48.97 0.799 0.979 
71.35 0.749 1.857 

166.3 0.581 7.155 
346.3 0.402 20.61 
485.7 0.291 32.93 
590.1 0.253 42.45 
592.3 0.230 42.62 
700.0 0.193 52.75 
811.7 0.154 63.82 
811.8 0.150 63.86 
78.84 0.431 4.40 

218.91 0254 15.97 
819.1 0.157 64.37 
927.4 0.124 75.37 
934.4 0.115 75.84 
984.0 0.110 81.40 
955.6 0.047 84.33 

1026.0 0.M9 90.M 
1233.6 0.053 106.23 

0.016 
0.044 
0.069 
0.295 
0.995 
1.90 
3.05 
2.95 
3.97 
7.10 
7.05 
0.61 
2.54 

> 5.4 
10.9 
7.9 

12.2 
> 250 
> 56 
> 31 

0.038 
0.073 
0.115 
0.366 
1.17 
2.26 
3.34 

4.79 
7.00 

- 

- 
- 
- 
- 
9.83 

12.1 
22.4 

- 

- 
- 

the calculated properties, as expected because configurational phase space becomes more 
structured with increasing Q,. Only those configurations consistent with a finite. periodic 
system are allowed, which produces an increasingly more unrepresentative average with 
increasing 6. Generally the internal energy (and other derived properties) and the viscosities 
decrease with increasing N .  The self-diffusion coefficients increase with N .  The system 
size dependence is an important factor which must be considered for volume fractions in 
excess of 0.40, and that is why we performed simulations on increasingly large numbers of 
particles as the volume fraction increases. 

Table 1 reveals that the 108 to 500 values of qa - qm at Q, = 0.427 are 3.05 to 2.95 
respectively, compared with 7.10 to z 5.4 at Q, = 0.472. There is a small N dependence 
at 6 = 0.427 but a more significant effect at Q, = 0.472. Where uncertainties exist we state. 
this (e.g. in table 1). However, we only extensively analyse and discuss the behaviour of 
the state points (typically Q, = 0.427 and 0.472 and below) for which we are confident that 
we are close enough to the thermodynamic limit not to influence our conclusions. Figure 1 
shows that the C&) become more long-lived with increasing 6. The shape of these curves 
can be represented very well by a so-called 'fractional' or "etched' exponential (except 
at very short times f / q  c 0.2 x lo-* where it underestimates the simulation C&)) 

C( t )  = G,exp(-(t/r')8). 

An example of the fit is given in figure 2. In table 2 we summarize the values of r' and p for 
the different systems. We also give in the table the mean relaxation time r = r T ( l / p ) / p  
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Figure 4. The strain amplihlde m dependence of the storage modulus of a N = 108 and 
@ = 0.427 system at the frequencies or, =, 10 or, = 100 and orr = 1000. 

for the normalized function 

t = lmexp(-(t’/t‘)p) dt’. (23) 

The simulations show that the mean relaxation time increases with volume fraction in 
agreement with the experimental data on sterically stabilized silica particles by van der 
Werff et aZ(l989). 

In the Q + 0 limit the stress relaxation function appears to be relatively insensitive 
to the value of Q. In this region the parameters have values j3 = 0.37 rt 0.01 and 
r’ = 0.0035 rt O.ooO1 for Q c 0.25. There is a gradual decrease in the value of j3 and 
increase in t’ with increasing volume fraction. The functional form of equation (22) can be 
written alternatively in the form of equation (17). The distributions of relaxation times p(r)  
or equivalently H(r)  for several representative choices of ,S and r’ are presented in figure 3 
using the numerical procedure developed by Lindsey and Patterson (1980) specifically for 
the stretched exponential (see also Montroll and Bendler (1984)). The figure shows that 
the shetched exponential produces a relaxation time distribution function with a relatively 
sharp cut-off at the high-r end, which gets sharper as p + 1 (being a S function for ,S = 1). 
There is a slower decay of H ( r )  in the t + 0 limit. The spectrum of relaxation times 
becomes broader as ,S decreases with increasing #. Also data for three different softnesses 
of interaction are specified by variable n values in equation (4). The figure reveals that 
as the interaction becomes softer (n decreases) then the relaxation function more closely 
approaches a single exponential (i.e. j3 + 0). If each of these relaxation times is identified 
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lbble 2. The parameters of the stretched exponential least-squares fit to the simulation C,(I) 
f” equation (22). The mean relaxation time is defined in equation (23). Key: (a) n = 6 in 
equation (4); (b) n = 12 in equation (4); ohenvise n = 36. 

108 0.075 
108 0.115 
108 0.150 
108 0250 
108 0350 
256 0.400 
108 0.427 
SW 0.450 
108 0.472 
256 0.472 
500‘ 0.472 
5Wb 0.472 
5W 0.472 
256 0.490 
5W 0.490 
108 0.500 
256 0.527 
500 0.527 

0.362 
0.360 
0.381 
0.384 
0.355 
0.331 
0.320 
0.315 
0.287 
0.283 
0.653 
0.485 
0.309 
0.278 
0.306 
0.269 
0.111 
0.239 

0.003 47 
0.00340 
0.003 60 
0.003 70 
0.00404 
0.003 72 
0.00420 
0,00465 
0.003 69 
0.00409 
0.0414 
0.0306 
0,00472 
0.00445 
0.00604 
0.00440 
0.000344 
0.005 7 I 

0.0156 
0.0155 
0.0137 
0.0138 
0.0193 
0.0228 
0.0292 
0.0341 
0.0398 
0.0465 
0.0563 
0.0648 
0.0373 
0.0540 
0.0493 
0.0603 
0281 
0.116 

with a particlular microscopic mechanism for stress release, then this trend indicates that 
there are many more significant dynamical processes, with a wide distribution of relaxation 
times, involved in stress relaxation at the higher volume fractions. The rapid decrease in 
C&) occurs in the time domain of the transition between the short- and long-time diffusion 
coefficients. 

The states 
at 4 = 0.472 and above manifest an N dependence with the N = 500 being the 
largest number of particles considered. Over the complete volume fraction range the 
following analytic expressions fit the experimental relative viscosity data of near hard- 
sphere dispersions (summarized in the Krieger-Dougherty expressions (Russel 1989)) quite 
well. The expressions are 

In table 1 we give the integrated shear viscosity from equation (13). 

qfi = (1 - @/0.63)-’ (24 
and 

qrm = (1 -$/0.71)-’. 125) 
The Krieger-Dougherty expression for qfi - qrm, gives values that are statistically very 
close to the simulation results (obtained by numerical integration of the time correlation 
functions) which is quite remarkable as the model has no many-body hydrodynamics in the 
equations of motion. This indicates that at these high volume fractions, the simple Langevin 
dynamics embodied in the computer algorithm used here reproduces well the rheology of 
the real systems. We now consider the oscillatory shear simulations carried out using the 
non-equilibrium BD method. We are interested in the linear response region here, so it is 
important to determine the maximum strain amplitude that can be used (which will depend 
on frequency) to retain a good approximation within the linear response regime. In figure 4 
we explore the strain amplitude dependence of the storage modulus, G’, for a 4 = 0.427 
state. Simulations were carried out over a range of yo between 0.01 and 1.0 at a series 
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Figure 5. Real (upper curves) and imaginary (lower cwes)  parts of  the relative complex 
shear viscosity as 3 function of frequency for the volume fractions r$ = 0.115, N = 108 and 
9 = 0.472, N = 5M). 

of fixed frequencies covering the range of interest. The response is linear for M < 0.1, 
showing shear sixain 'softening' of the elastic response for higher amplitudes. Values of 
yo = 0.02 were chosen for the oscillatory shear simulations to ensure linear response. 

The complex viscosities obtained from the stretched exponential fits to the time 
correlation functions using equation (15) and equation (16), are statistically indistinguishable 
from those obtained using the direct application of an oscillating shear flow field for 
oa2/Do < 1ooO. At higher frequencies systematic differences appear which arise from the 
failure of the fit to match the simulation C&) at very short times. The reduced frequency 
domain of oa2/Do > 1000 is not, however, of practical interest. The real and imaginary 
parts of the relative complex viscosity for two widely separated volume fractions are given 
in figure 5. The q' and q" shift to lower frequencies as q5 increases. For a20/Do between 
4 and 400 figure 6 shows that both the q' and q" decay as w-'I2 which can be described by 

(26) qi = q:, 4- A'(a20/Do)-'12 

q: = A"(a2w/Do)-"2. (27) 
This is in agreement with the data of van der Werff et af (1989). The dimensionless 
constants A' and A" have values 1.8 rt 0.1, 3.6 f 0.2 and 5.5 rt 0.5 at the volume fractions 
q5 = 0.35,0.427 and 0.472 respectively. The experimental values at these volume fractions 
are approximately double in magnitude. For + = 0.35.0.427 and 0.472 these parameters 
have the values 3.5 f 0.5, 9.0 f 1.0 and 30 rt 5, which were obtained by interpolating the 
experimental data on sterically stabilized silica particles from van der Werff et al (1989). 
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Figure 6. Normalized real pm of the relative complex shear viscosity as a function of 
(a2ar/Dr,)-’/2 for 9 E 0.350, 0.427 and 0.472. CF denotes Foluier bansformation of the 
correlation function and NE denotes the nonequilibrium BD method. 

The mode coupling theory of Cichocki and Felderhof (1991) gives values of A” equal to 
0.22, 0.33 and 0.40, for these state points. van der Werff et d (1989) also show that the 
complex viscosity scales with a reduced frequency, o a Z q / D ~ ,  where tl is the ‘longest’ 
relaxation time in their fit to the data. If we use the van der Werf€ values for a 2 q / D ~  
then the present simulation data also scale onto the same curve which is also statistically 
indistinguishable from their experimental data (see figure 7). The particle size and volume 
fraction therefore can be incorporated in this dimensionless scaling parameter. The values 
of n 2 q / D o  are approximately an order of magnitude larger than (but roughly propohonal 
to) the values of aZs/Do (where 5 is defined in equation (23)) which we obtained from our 
simulations. Cichocki and Felderhof (1992) give a value of the mean relaxation time in the 
dilute limit t = 2u2/9Do which is approximately an order of magnitude greater than the 
values given in table 2. Figure 1 shows that our simulated C&) decay rapidly and that, for a 
low volume fraction, it is improbable that there is a long-time tail ‘hidden’ within the noise 
which could lead to an order of magnitude increase in r when computed using equation (23). 
This is especially true for the lowest volume fraction state r$ = 0.075 which has a C&) 
that is statistically indistinguishable fiom zero for times longer than t = O.Saz/Do. Quite 
clearly there are long relaxation times in the time correlation function, but it would appear 
from OUT simulations that their amplitudes are rather small, except at high volume fractions 
near to close packing. This discrepancy does not affect our excellent agreement with the 
viscoelasticity, in figure 7, however, because this is a function of all the relaxation times in 
the model, not just the iongest. 
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Figure 7. Normalized real and imaginary part of the relative complex shear viscosity as a 
function of frequency for t h e  volume hctions = 0.350. 0.427 and 0.472 versus OT,. where 
Dos /a2  = 0.17.0.32 and 0.37 respectively. The ‘bars’ on the figure represent the limits of the 
band of experimental poi& from van der WerIT et aI(1989). 

The Stokes-Einstein relationship (applicable in the dilute limit) for this system is 
D L ~ ~ ( O ) / D O  = 1. In figure 8 we show that the ratio D L ~ ~ ( O ) / D O  is essentially linear with 
volume fraction up to 4 - 0.45 before levelling off. If it is assumed that the effective paaicle 
diameter is volume fraction independent, then this behaviour confirms that the viscosity 
increases more rapidly with solids fraction than the long-time diffusion coefficient decreases. 

4. Conclusions 

We have shown that Brownian dynamics computer simulation can be used to investigate the 
viscoelastic behaviour of model near-hard-sphere colloidal liquids up to volume fractions 
in excess of 0.50 using two complementary Brownian dynamics procedures (eqnilibrium 
and non-equilibrium). The linear stress relaxation function (stress autocorrelation function) 
is approximated well by a stretched exponential. Despite the absence of many-body 
hydrodynamics in our model algorithms, the Newtonian and complex shear viscosities give 
quite good agreement with the experimental values at the same volume fractions. 
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